
Lawrence Livermore National Laboratory

LLNL-PRES-403247

TALC: A Simple C Language Extension For Improved

Performance and Code Maintainability

Jeff Keasler
Linux Cluster Institute

NCSA 2008

Prepared by LLNL under Contract DE-AC52-07NA27344

2
LLNL-PRES-403029 Lawrence Livermore National Laboratory

The Software Chasm

Many important HPC
applications cannot be re-
written for practical reasons:

• Size of code.

• Additional efforts of
validating a rewrite.

• What do you rewrite to?

• Impact on budget and
deliverables.

Moore’s law is now spurring a renaissance
of architectural diversity in the HPC
marketplace:

• Multicore (Intel, AMD, Sun, …)
• System on a chip (IBM BlueGene,

SciCortex, …)
• The re-emergence of vector

(Cray,ClearSpeed,Intel, …)
• Graphical Units to supplement work

(IBM/Sony Cell, Nvidia, …)
What works well for one may work poorly for
another.

3
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Many software options exist to port to new architectures

� A manual rewrite would lock in one solution
� Automated transformations can generate each solution

Existing
Software

Systems on
a Chip

System
Specific
Libraries

Multicore

Rapidmind

ArchitecturesSoftware Solutions

OpenMP

CUDA

GPU

Cell

Manual approach has
unacceptable footprint
in source code

4
LLNL-PRES-403029 Lawrence Livermore National Laboratory

We Would Like To Leverage a Single Source Code for Many Architectures

ROSE Compiler
(CASC/Quinlan)

Source Code
(C/C++/Fortran)

Vendor
Compiler

Transformation
rules

Coding
Standards
(optional)

Research Existing

Optimization
Guidance
(optional)

Memory
Management

Architecture 1

Architecture N

Executable

Generated

.

.

.

5
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Motivation

� Many large science applications achieve a small
fraction of peak performance

� Known roadblocks to performance include
• User choice of data structures
• Conservative optimization choices by compilers

� We are working on a source-to-source translator called
TALC to allow users to control these issues for mesh
based codes without modifying their source code

6
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Mesh Based Physics

� Meshes are used to solve partial
differential equations

� Meshes are often described as
a hierarchy of locality contexts

� Examples of contexts include:
subdomains, patches, finite
elements and material regions

� Data layout choices are often
made within locality contexts to
increase cache performance

Mesh

Elements Nodes

Concrete Copper

2D Mesh

Node

Element

7
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Fundamental Data Layouts

� Array-Like
• double x[10000] ;

double y[10000] ;
double z[10000] ;

� Struct-Like
• struct coord {

double x, y, z ;
} point[10000] ;

� Clustered-Struct
• struct coord {

double x, y ;
} point[10000] ;
double z[10000] ;

Memory Interleave

…

…

…x x x x x x

y y y y y y

z z z z z z

…

…
x y x y x y

z z z z z z

…x y z x y z

8
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Stress-Strain Work Example – Array-Like Layout

double quarterDelta = 0.25 * deltaTime;

for (int i = 0 ; i < material_length ; i++){
int index = material_map[i];
double szz = - sxx[index] - syy[index] ;

deltz[index] += quarterDelta * (vnew[index] + v[index]) *
(dxx[index] * (sxx[index] + newSxx[i]) + dyy[index] * (syy[index] + newSyy[i]) +

dzz[index] * (szz + newSzz[i]) +
2.*dxy[index] * (txy[index] + newTxy[i]) + 2.*dxz[index] * (txz[index] + newTxz[i]) +
2.*dyz[index] * (tyz[index] + newTyz[i])) ;

delts[i] += quarterDelta * (vnew[index] + v[index]) *
(dxx[index] * sxx[index] + dyy[index] * syy[index] + dzz[index] * szz +
2.*dxy[index] * txy[index] + 2.*dxz[index] * txz[index] + 2.*dyz[index] * tyz[index]) ;

}
Here, each field variable occupies a separate array

9
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Stress-Strain Work Example – Struct-Like Layout

for (int i = 0 ; i < material_length ; i++){
int index = material_map[i];
double szz = - elem[index].sxx – elem[index].syy ;

elem[index].deltz += quarterDelta * (elem[index].vnew + elem[index].v) *
(elem[index].dxx * (elem[index].sxx + materialElem[i].newSxx) +

elem[index].dyy * (elem[index].syy + materialElem[i].newSyy) +
elem[index].dzz * (szz + materialElem[i].newSzz) +

2.*elem[index].dxy * (elem[index].txy + materialElem[i].newTxy) +
2.*elem[index].dxz * (elem[index].txz + materialElem[i].newTxz) +
2.*elem[index].dyz * (elem[index].tyz + materialElem[i].newTyz)) ;

materialElem[i].delts += quarterDelta * (elem[index].vnew + elem[index].v) *
(elem[index].dxx * elem[index].sxx + elem[index].dyy * elem[index].syy +

elem[index].dzz * szz + 2.*elem[index].dxy * elem[index].txy +
2.*elem[index].dxz * elem[index].txz + 2.*elem[index].dyz * elem[index].tyz) ;

}

Here, there are two contexts – mesh elements and mat erial elements

10
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Stress-Strain Work Example – Clustered-Struct Layout

for (int i = 0 ; i < material_length ; i++){
int index = material_map[i];
double szz = - stress[index].sxx – stress[index].syy ;

deltz[index] += quarterDelta * (volume[index].vnew + volume[index].v) *
(deform[index].dxx * (stress[index].sxx + materialStress[i].newSxx) +

deform[index].dyy * (stress[index].syy + materialStress[i].newSyy) +
deform[index].dzz * (szz + materialStress[i].newSzz) +

2.*deform[index].dxy * (stress[index].txy + materialStress[i].newTxy) +
2.*deform[index].dxz * (stress[index].txz + materialStress[i].newTxz) +
2.*deform[index].dyz * (stress[index].tyz + materialStress[i].newTyz)) ;

delts[i] += quarterDelta * (volume[index].vnew + volume[index].v) *
(deform[index].dxx * stress[index].sxx + deform[index].dyy * stress[index].syy +

deform[index].dzz * szz + 2.*deform[index].dxy * stress[index].txy +
2.*deform[index].dxz * stress[index].txz + 2.*deform[index].dyz * stress[index].tyz) ;

}

Here, contexts are created for each tightly bound g roup of field arrays

11
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Stress-Strain Work Example – Performance

A mesh of 12000 elements contains two sparse material subsets of
8000 and 4000 elements. The 8000 element subset is evaluated

93.3
74.5

91.0
95.4

91.1
94.8

Cache Hit %

Worse

Better
L1
L2

12
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Stress-Strain Work Example – Cache Performance

91.1%2737535042769568352Struct-Like

91.0%2814045352842569424Intermediate

93.3%2862396973955732080Array-Like

Hit
RatioMiss CountHit Count

Data
Layout

Opteron Hardware Counters
L1 Cache

� Some applications/architectures optimize best with
struct-like data layouts due to reduced register pressure
or better use of prefetch streams

13
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Second Example – Quadrilateral Volume

� An unstructured mesh is created for quadrilaterals
• Lattice of nodes stored as X and Y coordinate arrays
• Quadrilateral shape defined by four arrays of

nodal indices
� Wall clock run time is measured while varying

• Compilers
• Data representations (restricted pointers vs. STL)
• Data Layouts

−Separate coordinate and shape contexts
−Switch between Array-Like and Struct-Like layout

for each context

14
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Quadrilateral Volume Example – Performance

Quadrilateral Volume Calculation
Restricted Pointers

0
500

1000
1500
2000
2500
3000
3500

1 2 3 4

Data Layout Choice

T
im

e
(s

ec
on

ds
)

Opteron/g++4.1.1

Opteron/pgi6.2-3

Opteron/path3.0

GNU sees good optimizations for
the first and third layout, while
PathScale sees good optimizations
for the second and fourth.

15
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Quadrilateral Volume Example – Performance

Quadrilateral Volume Calculation
Restricted Pointers

0
500

1000
1500
2000
2500
3000
3500

1 2 3 4

Data Layout Choice

T
im

e
(s

ec
on

ds
)

Opteron/g++4.1.1

Opteron/pgi6.2-3

Opteron/path3.0

GNU sees good optimizations for
the first and third layout, while
PathScale sees good optimizations
for the second and fourth.

Quadrilateral Volume Calculation
C++ STL

0
500

1000
1500

2000
2500

3000
3500

1 2 3 4

Data Layout Choice

T
im

e
(s

ec
on

ds
)

Opteron/g++4.1.1

Opteron/pgi6.2-3

Opteron/path3.0

PGI sees more optimizations when
using the STL. Note that Pathscale
runs 25% slower when using the STL
for data layouts number two and four.

16
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Struct-Like Layouts Are Not Optimal For All Architectures

� An x86 SSE enabled processor can optimize
well with unaliased aligned array-like data
• double *x = new double[10000] ;

double *y = new double[10000] ;
double *z = new double[10000] ;

• Additional compiler directives are needed throughout
the source code to indicate pointers are aligned

17
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Memory Alignment Is Important For Many Architectures

144012801000000

18301290500000

37201290100000

3720129010000

827033401000

63003040100

Aligned(MB/s)Unaligned(MB/s)Array Size

BG/L memory throughput: a[i] = b[i] + ss*c[i]

Results: Norris, Hartono, Gropp

18
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Compiler Directives

� Memory Alignment
• Library calls such as posix_memalign()
• Compile line options such as –Mcache_align
• Compiler directives such as

− __alignx()
− _declspec(align())
− __attribute(align())
− __assume_aligned()

� Alias control
• For C/C++ use restrict or __restrict__

19
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Roadblocks to Data Layout Flexibility

� Users usually must rewrite their software to switch between Array-
Like and Struct-Like data layouts or to take advantage of compiler
directives
• This makes it difficult to adapt software to compensate for

performance idiosyncrasies of different compilers or memory
subsystems

• Software ends up being tuned for a specific hardware platform
and compiler environment

� Dynamic Memory Management is often supported as a library
rather than an integral part of the compiler
• Compiler cannot generate aggressive optimizations due to

incomplete knowledge of data layout, memory alignment, and
inter-relations among heap pointers

20
LLNL-PRES-403029 Lawrence Livermore National Laboratory

TALC

� TALC is a source-to-source translator that allows users
to direct compiler optimizations through the use of a
schema file

� The schema file provides a higher level of type
information about the problem being solved

� This enables a tight coordination between run-time
memory allocation and compile-time code generation,
which are currently somewhat disjoint

21
LLNL-PRES-403029 Lawrence Livermore National Laboratory

TALC – Allowing User Directed Compiler Optimizations

� The Schema file contains high level information about
data layouts

Quadrilateral Schema 1

View nodes
Field x
Field y

View

View elems
Relation:nodes n1 n2 n3 n4

View

Quadrilateral Schema 2

View nodes
Field x y

View

View elems
Relation:nodes n1 n2 n3 n4

View

22
LLNL-PRES-403029 Lawrence Livermore National Laboratory

TALC Schema

Shock Tube Schema

View mesh
View elems

Field mass momentum energy
Field pressure
View tube

Relation:faces upWindFace downWindFace
View

View

View faces
Field flux0 flux1 flux2
Realtion:elems upWindElem downWindElem

View
View

elems

tube

inflow outflow

23
LLNL-PRES-403029 Lawrence Livermore National Laboratory

TALC

� In addition to controlling data layouts via a schema file,
source-to-source translation allows us to
• Align variables when they are allocated on heap
• Apply machine specific compiler directives to

indicate cache alignment and alias restriction
� Features that allow this to work for us

• Consistent naming of Field arrays and contexts
• Hierarchical nature of context allocation already in

place in many of our scientific codes
• Intimate familiarity with the structure of our codes

24
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Potential Roadblocks

� Libraries
• Most libraries expect passed arrays to have a

specific memory layout (i.e. stride one array)
• Even if compiling library source code, the user would

need to understand the structure of the library
software to create an appropriate schema

� I/O
• Since many I/O operations are implemented using

libraries, the same problem applies as above.
• A library like MPI that provides a memory layout

interface may be automatically transformable

25
LLNL-PRES-403029 Lawrence Livermore National Laboratory

� Demonstration of Rapidmind backend
• Will work on select loops at first, low performance

� Full thread support
• Demonstration capability is already there

� Structured Indexsets

Future Work

Schema
View VecSpace:row:col

Field A
Field:row y
Field:col x

View

MVmul(is *vecSpace, PntrR y, A, x) {

while(vecSpace->(“row”)) {

y = 0.0 ;

while(vecSpace->(“col”)) {
y += A*x ;

}

}
}

26
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Conclusion

� A diversity of hardware architectures are being
introduced simultaneously (Multi-core, NUMA,
GPGPU/vector coprocessors)

� A low-impact change in our programming model may
provide a unified way of running effectively on a
diversity of system architectures

� A data-layout compiler has been written to explore this
issue using the ROSE source-to-source translator

